Dioxine / Dioxin

Polychlorierte Dibenzo-p-dioxine und Dibenzofurane (PCDD/PCDF) sind zwei Gruppen von chemisch ähnlich aufgebauten chlorierten organischen Verbindungen. Sie werden im allgemeinen Sprachgebrauch und teilweise auch in der Literatur als Dioxine zusammengefasst. Sie entstehen als Nebenprodukte bei der Herstellung chlororganischer Chemikalien oder bei Verbrennungsreaktionen. Durch technische Maßnahmen, beispielsweise den Einbau von Filtern in Müllverbrennungsanlagen, kann der Ausstoß von PCDD/PCD verringert werden. Allerdings ist die Verbreitung solcher Maßnahmen von Land zu Land unterschiedlich.

Die giftigste Einzelverbindung unter den Dioxinen ist das sogenannte „Sevesodioxin“ (2,3,7,8-Tetrachlordibenzodioxin, kurz 2,3,7,8-TCDD). Die akute Giftigkeit der übrigen polychlorierten Dibenzodioxine und Dibenzofurane wird relativ zu 2,3,7,8-TCDD angegeben. Polychlorierte Dioxine und Furane können bereits in geringen Mengen die Entstehung von Krebs aus vorgeschädigten Zellen fördern.

Als langlebige organische Schadstoffe werden sie in der Umwelt kaum abgebaut, Spuren von polychlorierten Dioxinen und Furanen kommen überall auf der Welt vor. Über die Nahrungskette reichern sie sich in lebenden Organismen an. Der Mensch nimmt Dioxine vor allem über tierische Nahrungsmittel (Fisch, Fleisch, Eier, Milchprodukte) auf. Ein wichtiger Indikator für die Belastung von Menschen ist die Konzentration in der Muttermilch


Dioxine sind persistent (langlebig) und werden hauptsächlich über den Luftpfad, gebunden an Staubpartikel, in der Umwelt verteilt. Sie sind ubiquitär nachzuweisen, kommen also überall auf der Welt in Böden, Gewässern, Sedimenten, Pflanzen, Tieren, Menschen etc. vor.

Der Eintrag von Dioxinen und Furanen in die Atmosphäre erfolgt in erster Linie mit dem Rauch von Verbrennungsprozessen. Daneben spielt die Verdampfung von an Böden angelagerten (adsorbierten) oder im Wasser gelösten Molekülen eine Rolle. Über die Atmosphäre werden Dioxine und Furane großflächig verteilt (Ferntransport), so dass sie selbst in Umweltproben aus entlegenen Regionen gefunden werden können. Niedrig halogenierte Dioxine kommen in der Atmosphäre überwiegend in der Gasphase vor, höher halogenierte sind zum größten Teil an Aerosol-Partikel gebunden. Das Mengenverhältnis von gasförmigen zu partikelgebundenen Molekülen wird für die Cl4DF mit 13, für Cl8DF mit 0,05 angegeben.

Ein Abbau in der Atmosphäre findet lediglich bei gasförmig vorliegenden Dioxinen und Furanen statt. Durch UV-Strahlen kommt es zur direkten Photolyse, daneben sind auch Reaktionen mit Hydroxyl-Radikalen von Bedeutung. Den atmosphärischen Abbaureaktionen unterliegen vor allem an den peri-Positionen (1,4,6,9) substituierte PCDD sowie an Position 1 und 9 substituierte PCDF. Mit zunehmendem Halogenierungsgrad sinkt dagegen die Anfälligkeit für diese Abbaumechanismen.

Als Austragsweg aus der Atmosphäre überwiegt die trockene Deposition durch Absetzen (Fall Out) von Partikeln gegenüber der nassen Deposition etwa im Verhältnis 5:1. Bei der nassen Deposition überwiegt das Ausregnen (Particle Scavenging) gegenüber dem Auswaschen (Gas Scavenging).

In Gewässer gelangen Dioxine und Furane vor allem durch Deposition aus der Atmosphäre und mit dem Abwasser. Als lipophile Verbindungen lagern sie sich zu einem großen Teil an im Wasser gelöste Kolloide wie Huminstoffe, an im Wasser schwebende (suspendierte) organische Partikel oder die lipophile Kahmhaut auf dem Wasser an. Frei im Wasser gelöste PCDD/PCDF können sich in die Atmosphäre verflüchtigen, unmittelbar an der Wasseroberfläche findet ein Abbau durch Photolyse statt. An Partikel gebundene Dioxine und Furane werden zum größten Teil in den Sedimenten abgelagert. Anhand von zeitlichen Trends der Konzentrationen in datierten Sedimentkernen können Rückschlüsse auf historische Emissionen gemacht werden. Allerdings muss beachtet werden, dass sich die Kongenerenmuster durch verschiedene Abbauprozesse (z. B. reduktive Dehalogenierung) verändern können. Der Anteil von niedrig chlorierten PCDD/PCDF kann daher über längere Zeiträume zunehmen. Trotzdem kann aufgrund der vor dem Jahr 1900 dominierenden niedrig chlorierten PCDDs geschlossen werden, dass in dieser Zeit der Eintrag durch die Dimerisierung von 2,4-Dichlorphenol groß war. Seit etwa den 1960er Jahren sind die Einträge von PCDD und PCDF in das Esthwaite Water in Nordengland rückläufig (siehe Grafiken rechts). Dies ist vor allem auf technische Maßnahmen in der Industrie und bei der Müllverbrennung zurückzuführen.

Die Belastung des Bodens geht überwiegend auf atmosphärische Deposition zurück, auf Wiesen und Feldern können daneben das Ausbringen von Klärschlamm oder Pflanzenschutzmitteln beigetragen haben. Dioxine und Furane adsorbieren an die organische Bodensubstanz und werden dort weitgehend zurückgehalten. Sie sind vor allem in den obersten fünf Zentimetern anzutreffen, eine Verlagerung in die Tiefe findet wegen der geringen Wasserlöslichkeit kaum statt. Böden sind neben den Sedimenten die wichtigste Senke für PCDD/PCDF. Die Halbwertszeiten im Boden liegen im Bereich von Jahren bis Jahrzehnten. Austrags- oder Abbauprozesse, wie etwa Verflüchtigung, Photolyse an der Bodenoberfläche, Abbau durch Mikroorganismen und Pilze oder die Aufnahme in Pflanzen verlaufen sehr langsam. Der Dehalococcoides-Stamm CBDB1 baute in Laborversuchen beispielsweise in 56 Tagen 60 % von 1,2,3-Trichlordibenzodioxin zu 2-Monochlordibenzodioxin ab, was in der Umwelt jedoch nicht erreicht wird. Durch Bodenerosion können adsorbierte Dioxine in nennenswertem Umfang ausgetragen werden.

In oder auf Pflanzen gelangen Dioxine und Furane hauptsächlich über die Luft, durch Diffusion aus der Gasphase oder die bereits erwähnten Mechanismen der trockenen und nassen Deposition. Sie befinden sich hauptsächlich in den Blättern und Nadeln. Pflanzenfressende Tiere nehmen Dioxine über das Futter auf. Da sie dabei oft geringe Mengen der meist stärker als die Pflanzen belasteten Bodenpartikel mitfressen, kann das merklich zur Gesamtaufnahme beitragen. Dioxine und Furane werden überwiegend in Leber und Fettgewebe eingelagert und reichern sich im Verlauf der Nahrungskette immer stärker an. Im Wasser sind gelöste oder an Schwebstoffe gebundene Dioxine besonders gut für Kleinlebewesen verfügbar, daher reichern sie sich dort über die Nahrungsketten stark an.

Hühner in Freilandhaltung nehmen Dioxine und Furane hauptsächlich durch das Aufpicken von Bodenpartikeln auf. In den Eiern kommen diese Substanzen aufgrund ihrer Fettlöslichkeit überwiegend im Eidotter vor, das zu einem Drittel aus Fett besteht. Seit Januar 2005 gilt für Eier EU-weit ein Dioxin-Grenzwert von 3 pg TEQ Dioxinen/g Fett oder 6 pg TEQ/g Fett für Dioxine und dioxinähnliche PCB. Bei Stichproben waren Eier von Hühnern in Freilandhaltung meist stärker mit Dioxinen belastet als Eier aus Boden- oder Käfighaltung. Die Grenzwerte werden bei Freilandhaltung gelegentlich überschritten.

Daneben können Nutztiere Dioxine durch verunreinigte Futtermittel aufnehmen. So mussten im Mai 2010 in Deutschland mehrere Legehennenbetriebe geschlossen werden, nachdem kontaminierter Mais zu Biofutter verarbeitet wurde. Im Dezember 2010 wurden erneut belastete Proben von Eiern und Geflügelfleisch gefunden. Als Quelle der Dioxinkontamination erwies sich der Futtermittelproduzent Harles und Jentzsch, der nach eigenen Angaben versehentlich für die Herstellung von Tierfutterfetten technische Fette aus der Biodieselproduktion verwendet hatte. Nach Schätzungen der Bundesregierung wurden bis zu 3000 Tonnen belastetes Tierfutterfett hergestellt und an Legehennen, Mastschweine und Mastgeflügel verfüttert. Bis Anfang Januar 2011 wurden mehr als 1000 landwirtschaftliche Betriebe gesperrt.

Fische sind oft stark mit Dioxinen belastet, das gilt insbesondere für Fische mit einem hohen Fettgehalt. Besonders häufig werden die EU-Grenzwerte (4 pg TEQ Dioxine/g Frischgewicht oder 8 pg TEQ der Summe aus Dioxinen und dioxinähnlichen PCB) bei Fischen aus dem Ostseegebiet überschritten. In Schweden und Finnland gilt eine Ausnahmeregelung, nach der Lachs, Hering, Flussneunauge, Bachforelle, Saiblinge sowie Rogen der Kleinen Maräne in den Verkehr gebracht werden dürfen, selbst wenn sie die Dioxingrenzwerte der EU überschreiten. Die Verbraucher müssen über das damit verbundene Gesundheitsrisiko informiert werden. Außerdem muss sichergestellt werden, dass die Ware nicht in andere Länder gelangt.

Da Dioxine sehr lipophil (fettlöslich) sind, reichern sie sich bei Menschen und Tieren insbesondere im Fettgewebe an. Als Indikator für die Dioxin-Belastung von Menschen wird häufig Muttermilch untersucht, da sich aufgrund des hohen Fettgehaltes Dioxine darin anreichern und Proben leicht zu bekommen sind. Der Nachweis von Dioxinen in Muttermilch gelang schwedischen Wissenschaftlern erstmals 1984, die Kieler Bundesanstalt für Milchforschung stellte 1985 fest, dass in Muttermilch die Dioxin-Richtwerte für Kuhmilch häufig überschritten wurden. Es wurde empfohlen, Säuglinge nicht länger als ein halbes Jahr zu stillen. Bedingt durch gesetzliche Regelungen und daraus resultierende technische Maßnahmen ist in Mitteleuropa die Gesamtbelastung durch Dioxine deutlich zurückgegangen.

1988 betrug in urbanen Gegenden der EU die durchschnittliche Belastung von Muttermilch mit PCDD/PCDF 29,5 pg I-TEQ pro Gramm Milchfett. Bis 1993 sank die Belastung um ein Drittel auf 19,2 pg I-TEQ pro Gramm Milchfett.


Aufnahme und Stoffwechsel
Da Dioxine ubiquitär sind, lässt sich ihre Aufnahme nicht vermeiden. Beim Menschen erfolgt die Aufnahme von Dioxinen zu 90–95 % über die Nahrung, besonders über fetthaltige tierische Lebensmittel wie Milchprodukte, Fleisch und Fisch, aber auch Gemüse. In Schweden beträgt die Aufnahme durch die Nahrung rund 100 pg I-TEQ/Tag, wovon die Hälfte auf den Verzehr von Fisch und Meeresfrüchten zurückzuführen ist. Die durchschnittliche Dioxin-Aufnahme von US-Amerikanern liegt heute mit etwa 1 pg TEQ/kg Körpergewicht und Tag in derselben Größenordnung. Säuglinge nehmen im Schnitt täglich 35–53 pg TEQ/kg Körpergewicht auf. Dank einer höheren Ausscheidungsrate und durch ihr Wachstum sind die Dioxin-Gehalte im Gewebe von Säuglingen aber nur etwa dreimal höher als bei Erwachsenen.

Dioxine können über die Lunge aufgenommen werden, insbesondere wenn sie an Feinstaub gebunden sind. Aus der Luft nehmen Menschen täglich normalerweise 2–6 pg I-TEQ auf, etwa 5 % der Gesamtaufnahme. Beim Rauchen einer Zigarette entstehen etwa 0,1 pg I-TEQ PCDD/PCDF, weshalb starke Raucher über die Lunge etwas mehr resorbieren. Eine Aufnahme über die Haut ist zwar möglich, sie spielt aber nur bei außergewöhnlich hoher Dioxinbelastung eine Rolle.

Im Körper werden aufgenommene Dioxine und Furane an die Lipide und Lipoproteine des Blutes angelagert und weiterverteilt. Sie reichern sich vor allem im Fettgewebe und in der Leber an. Beim Menschen enthält das Fettgewebe etwa 30 ng I-TEQ/kg. Im Fett eingelagerte Dioxine sind biologisch inaktiv, sie werden erst beim Abbau des Fetts wieder freigesetzt. Das ist insbesondere für die Belastung von Säuglingen über die Muttermilch von Bedeutung.

Die Metabolisierung von Dioxinen in der Leber geschieht durch reduktive Dehalogenierung oder als Hydroxylierung durch den Cytochrom P450 Enzymkomplex. Über epoxidische Zwischenstufen werden Halogenatome abgespalten und Hydroxygruppen in das Dioxinmolekül eingebracht. An einen Hydroxyrest kann in einem weiteren Schritt beispielsweise Glucuronsäure angehängt werden. Die Abbaurate ist bei den 2,3,7,8-substituierten Kongeneren am geringsten, wodurch ihr relativer Anteil im Körper steigt. Kongenere mit drei und mehr Halogenatomen je Phenylring werden ebenfalls kaum abgebaut. Metabolisierte und unmetabolisierte Dioxine werden mit dem Kot ausgeschieden. Die biologischen Halbwertszeiten können von Art zu Art stark unterschiedlich sein, so betragen sie für 2,3,7,8-Cl4DD bei der Ratte 17–31 Tage, beim Menschen 6–10 Jahre.

Empfehlungen und Grenzwerte
Aufgrund von Tierversuchen wurden NOAEL-Werte ermittelt, aus denen verschiedene Staaten und Organisationen unter Berücksichtigung eines Sicherheitsfaktors Empfehlungen für die tolerierbare tägliche Aufnahme (TDI) von Dioxinen hergeleitet haben. Die Weltgesundheitsorganisation empfahl 1991 eine TDI von 1–10 pg I-TEQ/kg Körpergewicht und Tag, 1998 wurde die empfohlene TDI auf 1–4 pg I-TEQ/kg gesenkt. Ein im Auftrag der EU-Kommission tätiger Ausschuss veröffentlichte 2001 eine tolerierbare wöchentliche Aufnahme (TWI) von 14 pg TEQ/kg.

Seit 2006 sind in der EU die Grenzwerte in einzelnen Lebensmitteln sowohl als Toxizitätsäquivalente Dioxine wie auch für die Summe der TEQ aus Dioxinen und dioxinähnlichen PCB festgelegt. Für eine Übergangszeit gelten beide Grenzwerte parallel. Bis Ende 2008 soll geprüft werden, ob die separaten Grenzwerte für Dioxine entfallen können.


Akute Toxizität
Polychlorierte Dibenzodioxine und -furane sind sehr giftig, das 2,3,7,8-TCDD wird teilweise als „die giftigste vom Menschen hergestellte Verbindung“ bezeichnet. Bei Mäusen beträgt die Dosis, bei der 50% der Tiere sterben (sogenannte LD50) etwa 100 µg 2,3,7,8-TCDD/kg Körpergewicht. Allerdings kann die Giftwirkung von TCDD selbst für nahe verwandte Tiere stark unterschiedlich sein, beim Hamster wirken erst etwa 1.000 µg/kg tödlich, während es für Meerschweinchen mit etwa 1 µg/kg extrem giftig ist. Für den Menschen ist die tödliche Grenzdosis nicht bekannt, sie liegt aber deutlich höher als beim Meerschweinchen.[35] Bei dem Chemieunfall im italienischen Seveso 1976 starben durch das ausgetretene 2,3,7,8-Tetrachlordibenzo-p-dioxin (seitdem „Sevesodioxin“ genannt) „nur“ Vögel und Kleintiere. Bei etwa 190 Menschen wurde Chlorakne, eine schwere Form von chronischer Akne, festgestellt, die bei akuter Dioxinvergiftung auftreten kann. Die Konzentrationen von Sevesodioxin im Blutserum betrugen bis zu 56 ppb. Der bisher höchste Wert von 144 ppb wurde im Blutfett einer Frau in Österreich gemessen. Bei Wiktor Juschtschenko wurde eine Konzentration von 100 ppb festgestellt.

Die toxische Wirkung von Dioxinen beruht auf ihrer Bindung an ein in Tieren und Menschen weit verbreitetes Zellprotein, den Arylhydrocarbonrezeptor (AhR). Das Dioxin bindet in der Zelle an diesen Rezeptor, der Enzym-Substrat-Komplex lagert sich an die DNA an und löst damit die verstärkte Bildung von fremdstoffabbauenden Enzymen, insbesondere von Cytochrom P450-Monooxygenasen aus. Die Stärke der Bindung und damit die Toxizität der Substanz hängt von dem jeweiligen Dioxin oder Furan (Anzahl und Stellung der Halogenatome) ab. Die Neigung zur Bindung an den Ah-Rezeptor ist bei den 2,3,7,8-substituierten Dioxinen und Furanen am höchsten.

Als weitere Wirkmechanismen der Dioxine und Furane wurden ihre Bindung an den Rezeptor für den epidermalen Wachstumsfaktor (EGF), ihre agonistische Wirkung für Schilddrüsenhormone und Auswirkungen auf den Vitamin A-Stoffwechsel diskutiert

Beim Menschen ist die Chlorakne das Leitsymptom schwerer akuter Dioxinvergiftungen. Sie wird durch Hautkontakt mit Dioxinen oder durch Dioxin-Konzentrationen im Blutserum von mehr als 800 ng/kg ausgelöst. Durch Schädigung der Leber wird der Stoffwechsel gestört, wodurch die Gehalte an Lipiden, Cholesterin und Transaminasen im Blut ansteigen. Im Tierversuch führen Dioxine und Furane zu anhaltender Übelkeit, Erbrechen und Appetitlosigkeit. Es kommt zu starkem Gewichtsverlust, dem „Wasting-Syndrom“. An neurologischen Störungen können sie unter anderem Übelkeit, Schlafstörungen, Kopfschmerzen, Reizbarkeit, Depressionen und eine allgemeine Veränderung der Psyche verursachen. Bei höheren Dosen können über Veränderungen der Schilddrüse immuntoxische Effekte ausgelöst werden, wofür Menschen weniger anfällig zu sein scheinen als einige Säugetiere.

Chronische Toxizität
Zur chronischen Toxizität geringerer PCDD/PCDF-Konzentrationen gehört ihre fetotoxische und fruchtschädigende (teratogene) Wirkung. Bei der Maus führen bereits sehr niedrige Dosierungen von 1 ng/kg Körpergewicht/Tag zur Bildung von Gaumenspalten oder Schäden an Niere und Schilddrüse. Bei Affen traten bei dieser Dosierung keine fruchtschädigenden Wirkungen auf, allerdings war die Zahl der Fehlgeburten erhöht. Ein Anstieg der Konzentrationen bestimmter Enzyme (Enzyminduktion) durch Binden an den Ah-Rezeptor ist bei Nagetieren schon bei geringer Dosis möglich. Dioxine und Furane haben keine direkte gentoxische Wirkung. Sie können die Entstehung von Krebs aus einer vorgeschädigten Zelle beschleunigen (tumorpromovierende Wirkung). Das 2,3,7,8-TCDD gilt als eine der am stärksten tumorpromovierenden Substanzen überhaupt. Bei Ratten können Dioxine Leberkrebs, aber auch Karzinome in Lunge, Schilddrüse und Nebenniere auslösen. Ob Dioxine beim Menschen Krebs auslösen können, ist nicht abschließend gesichert. Verschiedene Studien fanden bei stark exponierten Personen ein erhöhtes Auftreten von Leukämie, Tumoren der Atmungsorgane und der Gallenblase sowie des Weichteilsarkoms. Für eine statistisch abgesicherte Aussage waren die Fallzahlen der einzelnen Studien zu klein, außerdem wurden die Einwirkung anderer Chemikalien und des Rauchens nicht berücksichtigt. Fachgremien der Weltgesundheitsorganisation (WHO), der amerikanischen Gesundheitsbehörden und der US-Umweltbehörde EPA stufen 2,3,7,8-TCDD als für Menschen krebserregend ein

Behandlung
Bei einer akuten Vergiftung ist keine Möglichkeit zur raschen Entgiftung bekannt. Wegen der Einlagerung im Fettgewebe des Körpers können sie selbst durch Blutwäsche nicht oder nur langsam ausgeschieden werden. Auch für die in der medizinischen Literatur vorgeschlagene Gabe von Paraffin-Öl und medizinischem Alkohol gibt es bislang keinen Erfolgsbeweis, jedoch lassen neuere Erkenntnisse sowie Vergleiche mit anderen Schadstoffen und Giften diesen Ansatz erfolgversprechend erscheinen. Eine erfolgreiche Therapie wäre demnach durch das Verabreichen bestimmter Fettersatzstoffe möglich, wie z. B. Olestra. Diese Fettersatzstoffe werden vom Darm nicht aufgenommen, lösen aber bei der Darmpassage einen Teil des im Körper vorhandenen Dioxins, das mit ausgeschieden wird


Quelle: http://de.wikipedia.org
Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.

Text steht unter der GNU-Lizenz für freie Dokumentation